Universal correlation between energy gap and foldability for the random energy model and lattice proteins

نویسندگان

  • Nicolas E. G. Buchler
  • Richard A. Goldstein
چکیده

The random energy model, originally used to analyze the physics of spin glasses, has been employed to explore what makes a protein a good folder versus a bad folder. In earlier work, the ratio of the folding temperature over the glass–transition temperature was related to a statistical measure of protein energy landscapes denoted as the foldability F. It was posited and subsequently established by simulation that good folders had larger foldabilities, on average, than bad folders. An alternative hypothesis, equally verified by protein folding simulations, was that it is the energy gap D between the native state and the next highest energy that distinguishes good folders from bad folders. This duality of measures has led to some controversy and confusion with little done to reconcile the two. In this paper, we revisit the random energy model to derive the statistical distributions of the various energy gaps and foldability. The resulting joint distribution allows us to explicitly demonstrate the positive correlation between foldability and energy gap. In addition, we compare the results of this analytical theory with a variety of lattice models. Our simulations indicate that both the individual distributions and the joint distribution of foldability and energy gap agree qualitatively well with the random energy model. It is argued that the universal distribution of and the positive correlation between foldability and energy gap, both in lattice proteins and the random energy model, is simply a stochastic consequence of the ‘‘thermodynamic hypothesis.’’ © 1999 American Institute of Physics. @S0021-9606~99!50538-2#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Study of Hydrophobic-Polar and Miyazawa-Jernigan Energy Functions in Protein Folding on a Cubic Lattice Using Pruned-Enriched Rosenbluth Monte Carlo Algorithm

In this analysis of the contact energies guiding the protein folding, the performance of the PERM algorithm on a simple, cubic lattice is examined when Miyazawa-Jernigan (MJ) and Hydrophobic-Polar (HP) energy matrices are applied. Geometric similarity of minimum energy conformations of twenty proteins, generated when HP and MJ are used, is determined by the Root Mean Square Difference (RMSD) an...

متن کامل

Comment on"A Criterion that determines foldability of proteins"by D. Klimov and D. Thirumalai (PRL,v.76, p.4070 (1996))

Comment on " A Criterion that determines foldability of proteins " by D.Klimov and D.Thirumalai The paper by Klimov and Thirumalai (KT) [1] presents results for protein folding obtained from Monte Carlo lattice model simulations of the type introduced in [2]. They draw two conclusions from their study of 15-mers and 27-mers. The first conclusion is that there exists a strong correlation between...

متن کامل

Reply to Comment on"Criterion that Determines the Foldability of Proteins"

We point out that the correlation between folding times and σ = (T θ − T f)/T θ in protein-like heteropolymer models where T θ and T f are the collapse and folding transition temperatures was already established in 1993 before the other presumed equivalent criterion (folding times correlating with T f alone) was suggested. We argue that the folding times for these models show no useful correlat...

متن کامل

How optimization of potential functions affects protein folding.

The relationship between the optimization of the potential function and the foldability of theoretical protein models is studied based on investigations of a 27-mer cubic-lattice protein model and a more realistic lattice model for the protein crambin. In both the simple and the more complicated systems, optimization of the energy parameters achieves significant improvements in the statistical-...

متن کامل

Tight- binding study of electronic band structure of anisotropic honeycomb lattice

 The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999